
Reasonable Agda Is Correct Haskell:
Writing Verified Haskell using agda2hs

Jesper Cockx
TU Delft

Delft, Netherlands
j.g.h.cockx@tudelft.nl

Orestis Melkonian
University of Edinburgh

Edinburgh, United Kingdom
IOG
Global

orestis.melkonian@ed.ac.uk

Lucas Escot
TU Delft

Delft, Netherlands
l.f.b.escot@tudelft.nl

James Chapman
IOG
Global

james.chapman@iohk.io

Ulf Norell
Gothenburg University
Gothenburg, Sweden
ulf.norell@cse.gu.se

Abstract
Modern dependently typed languages such as Agda can be
used to statically enforce the correctness of programs. How-
ever, they still lack the large ecosystem of a more popu-
lar language like Haskell. To combine the strength of both
approaches, we present agda2hs, a tool that translates an
expressive subset of Agda to readable Haskell, erasing de-
pendent types and proofs in the process. Thanks to Agda’s
support for erasure annotations, this process is both safe
and transparent to the user. Compared to other tools for
program extraction, agda2hs uses a syntax that is already
familiar to functional programmers, allows for both intrin-
sic and extrinsic approaches to verification, and produces
Haskell code that is easy to read and audit by programmers
with no knowledge of Agda.

We present a practical use case of agda2hs at IOG to ver-
ify properties of a program generator. While both agda2hs
and its ecosystem are still young, our experiences so far
show that this is a viable approach to make verified func-
tional programming available to a broader audience.
This paper is a literate Agda script, hence all rendered

(Agda) code has been typechecked.

CCS Concepts: • Software and its engineering→ Source
code generation; Functional languages; Formal software ver-
ification; Correctness.

Keywords: Dependent types, Agda, Formal verification,
Program extraction

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9438-3/22/09.
https://doi.org/10.1145/3546189.3549920

ACM Reference Format:
Jesper Cockx, Orestis Melkonian, Lucas Escot, James Chapman,
and Ulf Norell. 2022. Reasonable Agda Is Correct Haskell: Writing
Verified Haskell using agda2hs. In Proceedings of the 15th ACM SIG-
PLAN International Haskell Symposium (Haskell ’22), September 15–
16, 2022, Ljubljana, Slovenia. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3546189.3549920

1 Introduction
Haskell is a strongly typed, purely functional program-

ming language. One big advantage of purity is that it makes
it easy to reason about the correctness of algorithms and
data structures. This is demonstrated for example in the
book by Hutton [19, Chapter 16], where equational reason-
ing, case analysis, and induction are used to prove proper-
ties of Haskell functions. However, since these proofs are
done ‘on paper’, there is always a risk that the proof con-
tains a mistake, or that the code changes to a new version
but the proof is not updated.
In a dependently typed programming language such as

Agda [2], we can do better and actually write a formal proof
of correctness in the language itself. This proof is checked
automatically by the typechecker. Moreover, any time the
program is modified, the proof is re-checked, so it is guar-
anteed to be up-to-date with the latest version. Thus, it pro-
vides an unusually high degree of confidence in the correct-
ness of the program.
Unfortunately, despite several big successes in depen-

dently typed programming such as the CompCert verified
C compiler [21], these languages remain relatively inac-
cessible to the general public. Compared to a language
like Haskell, they lack an extensive ecosystem of libraries,
tools for testing, profiling, debugging, and integration with
other languages. Since none of the current languages with
theorem proving capabilities has the user base to support
such an ecosystem, we must look into alternative methods
to make verified functional programming accessible to a
broader audience.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

108

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

data Tree (@0 l u : Nat) : Set where
Leaf : (@0 pf : l ≤ u)→ Tree l u
Node : (x : Nat) → Tree l x → Tree x u → Tree l u

{-# COMPILE AGDA2HS Tree #-}

insert : {@0 l u : Nat} (x : Nat) → Tree l u
→ @0 (l ≤ x) →@0 (x ≤ u)→ Tree l u

insert x (Leaf _) l≤x x≤u = Node x (Leaf l≤x) (Leaf x≤u)
insert x (Node y l r) l≤x x≤u =
case compare x y of 𝜆 where
(LT x≤y) → Node y (insert x l l≤x x≤y) r
(EQ x≡y)→ Node y l r
(GT y≤x) → Node y l (insert x r y≤x x≤u)

{-# COMPILE AGDA2HS insert #-}

data Tree = Leaf
| Node Natural Tree Tree

insert :: Natural -> Tree -> Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r)
= case compare x y of

LT -> Node y (insert x l) r
EQ -> Node x l r
GT -> Node y l (insert x r)

Figure 1. A representation of binary search trees in Agda that enforces the internal invariants, and an intrinsically verified
insertion function (left) and the corresponding Haskell definitions produced by agda2hs (right). Note that all traces of the
verification of the bounds are erased from the Haskell code.

Another issue with current tools for code extraction is
that we might start from a large existing codebase in a lan-
guage such as Haskell, where it is not feasible to rewrite all
code in a proof assistant and prove it correct. In this case, we
might want to improve our trust in an existing program by
reimplementing a critical component in a verified way and
dropping the result into the existing code. We could call this
a “seismic correctness retrofit”, analogous to the “seismic se-
curity retrofit” [16], which is itself inspired by the technique
in structural engineering where existing buildings are made
more resistant to earthquakes by improving their founda-
tions and other critical components.
We present agda2hs1, a tool that aims to combine the

rich ecosystem of Haskell with the verification capabilities
of Agda. In particular, agda2hs identifies a common sub-
set of the two languages, and provides a faithful translation
of this subset from Agda to Haskell. This translation erases
all traces of dependent types and proofs embedded in the
program, leaving just clean and readable Haskell code.Thus
agda2hs allows library developers to implement libraries in
Agda and verify their correctness, and then translate the re-
sult to Haskell so it can be used and understood by Haskell
programmers. In particular, it can be audited by Haskell pro-
grammers without any Agda expertise of their own.
As an example, we define a type of binary trees with val-

ues between two given bounds in Fig. 1. At each node the
lower and upper bounds of the subtrees are iteratively tight-
ened, and each leaf contains evidence that the bounds are
consistent. agda2hs makes use of erasure annotations @0
[4, 25] to mark explicitly which parts of the code should be

1agda2hs is available at https://github.com/agda/agda2hs.

erased during the translation to Haskell. After this erasure
is finished, we end up with a simple Haskell datatype.
Next, we implement an insertion function that requires

the inserted value between the lower and upper bound and
ensures the bounds are unchanged. agda2hs translates this
function to a simple Haskell function. Thanks to the expres-
sive Agda type of this function, we can be sure that it pre-
serves the internal invariants of the tree.
agda2hs allows you to verify as many or as few proper-

ties as you desire. On one side of the spectrum, you could
write what amounts to Haskell code in Agda syntax, ben-
efitting from Agda’s support for type-driven development
with interactive features such as holes and case splitting as
well as powerful metaprogramming facilities through elab-
orator reflection [10]. You can then gradually increase the
trustworthiness of the program by adding extra indices to
datatypes or proof arguments to this code, statically enforc-
ing pre-/post-conditions and invariants while keeping the
generated Haskell code simple and clean. With these more
expressive types, errors in the program are detected as it is
being written.
On the other side of the spectrum, you have the full power

of Agda’s theorem proving capabilities at your fingertips to
prove functional correctness of your algorithms, using your
choice of extrinsic or intrinsic approaches to verification. In
extrinsic verification the proof is completely separate from
the program, while in intrinsic verification, properties are
encoded directly in the type of data and functions. Extrinsic
verification makes it easier to decouple the programs from
their proofs, while intrinsic verification often does not re-
quire writing any proofs as such, which makes it more intu-
itive to functional programmers. For both intrinsic and ex-
trinsic verification, all type indices and proofs can be erased

109

https://github.com/agda/agda2hs

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

from the generated code, leaving just a clean and simply-
typed Haskell program.

Contributions.

• We present agda2hs, a tool for automatically translat-
ing a subset of Agda to readable Haskell code (Sect. 2).

• We demonstrate how the erasure annotations of
McBride [25] can be used to make erasure of proofs
and type-level indices both safer and more explicit to
the user (Sect. 2.1).

• We describe a practical use case of agda2hs at IOG,
where it is used to verify properties of a program gen-
erator (Sect. 3).

We discuss the correctness of our approach in Sect. 4 and
its implementation in Sect. 5. Sect. 6 presents related work,
and Sect. 7 concludes.
This paper is a literate Agda script, hence all rendered

(Agda) code has been typechecked.

2 agda2Hs
The goal of agda2hs is to produce nice looking, readable,
and verified Haskell code. One way of achieving this would
be to take the Haskell code as given and translate it to Agda
or another theorem prover for verification. As explained in
the introduction, this makes it impossible to use intrinsic
verification, and it decouples the program from its proof of
correctness, which means that they risk going out of sync.
So instead we have chosen to translate in the other direc-

tion. That is, programs are written in a subset of Agda that
supports a straightforward translation to readable Haskell
code. Since the translation erases proofs and properties from
the code, these can be written using the full Agda lan-
guage without compromising the readability of the result-
ing Haskell code. The resulting workflow is rather satisfy-
ing; the user interactively edits an Agda file as usual, with
the only difference being additional COMPILE AGDA2HS
pragmas for invoking compilation of specific definitions.

2.1 Erasure of Type-Level Arguments
Some parts of a Agda type or expression may be present
only for the purpose of proving some property or invari-
ant and can thus be erased from the Haskell code. These
parts often rely on dependent types in an essential way so
they are difficult or impossible to represent faithfully on the
Haskell side. In particular, we want to erase indices of in-
dexed datatypes, thus translating a correct-by-construction,
intrinsically typed datatype such as Tree in Fig. 1 directly to
a plain Haskell type with no indices.
To determine which arguments of an expression should

be erased, agda2hs adheres to the following rules:

• Any argument that is marked as erased2 with an @0
annotation [4] is erased from the Haskell code.

• Any argument of type Level (used for universe poly-
morphism in Agda) or Set ℓ is also erased.

By marking3 arguments that should be erased with @0, we
get the guarantee from Agda’s type system that the run-
time behaviour of the function does not depend on the value
of the erased argument, so erasing the argument is sound
(see Sect. 4 for more details on the correctness of our ap-
proach). Likewise, pattern matching on values of type Level
or Set ℓ is impossible, so erasing them is sound as well.

2.2 Intrinsic versus Extrinsic Verification
The translation described thus far accommodates both in-
trinsic and extrinsic verification. We already saw an exam-
ple of intrinsically verifying the insert function in Fig. 1, but
one can also arrive at the exact same translation artifact–as
well as prove the same guarantees–extrinsically, as demon-
strated in Fig. 2.
In this case, we opt for a plain, non-dependent Tree with

no type indices and a corresponding simply typed insert.
Verification happens a posteriori as a separate theorem af-
ter the definitions. Notice how the form of insert remains
almost identical through the translation, while there is a sig-
nificant overhead to compensate for the type information
we dropped from the intrinsic version.

2.3 Primitives & Prelude
If we are to accomplish seamless integration across lan-
guage barriers, it is of utmost importance to make the cur-
rent definitions in Haskell’s Prelude accessible on the Agda
side as well. To this end, we have ported most of Haskell’s
Prelude on the Agda side, staying as faithful as possible to
the Haskell idiom.This essentially forms the trusted comput-
ing base, along with the code implementing the actual trans-
lation.That is, we have to be absolutely certain that theAgda
implementation of these functions corresponds precisely to
the original functionality in Haskell. Alas, there are cases
where this process is not as straightforward as one might
initially expect.
Haskell’s primitive types and operations are matched

directly to their Agda counterparts if they exist (e.g.
Agda’s Agda.Builtin.Nat is translated to Haskell’s Nu-
meric.Natural), otherwise we provide a new Agda imple-
mentation in the Haskell.Prelude module as close as possi-
ble to the original interface and extend the translation to ac-
count for this new mapping (e.g. n-ary tuples, if-then-else
notation, and pattern matching with case). For a better user
experience, the backend discovers when built-in types are
2Also known as run-time irrelevant, see https://agda.readthedocs.io/en/v2.
6.2/language/runtime-irrelevance.html.
3In theory, these erasure annotations could be inferred automatically, but
this would require an extension of Agda with erasure inference [31], which
is outside of our current scope.

110

https://agda.readthedocs.io/en/v2.6.2/language/runtime-irrelevance.html
https://agda.readthedocs.io/en/v2.6.2/language/runtime-irrelevance.html

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

data Tree : Set where
Leaf : Tree
Node : Nat→ Tree → Tree→ Tree

{-# COMPILE AGDA2HS Tree #-}

insert : Nat → Tree→ Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) =
case compare x y of 𝜆 where
(LT _)→ Node y (insert x l) r
(EQ _)→ Node y l r
(GT _) → Node y l (insert x r)

{-# COMPILE AGDA2HS insert #-}

@0 _≤_≤_ : Nat→ Tree→ Nat→ Set
l ≤ Leaf ≤ u = l ≤ u
l ≤ Node x tˡ tʳ ≤ u = (l ≤ tˡ ≤ x) × (x ≤ tʳ ≤ u)

@0 insert-correct : ∀ {t x l u}→ l ≤ t ≤ u
→ l ≤ x → x ≤ u → l ≤ insert x t ≤ u

insert-correct {Leaf} _ l≤x x≤u = l≤x , x≤u
insert-correct {Node y tˡ tʳ } {x} (IHˡ , IHʳ) l≤x x≤u
with compare x y

… | LT x≤y = insert-correct IHˡ l≤x x≤y , IHʳ
… | EQ refl = IHˡ , IHʳ
… | GT y≤x = IHˡ , insert-correct IHʳ y≤x x≤u

data Tree = Leaf
| Node Natural Tree Tree

insert :: Natural -> Tree -> Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r)
= case compare x y of

LT -> Node y (insert x l) r
EQ -> Node y l r
GT -> Node y l (insert x r)

Figure 2. An unverified insertion function and its extrinsic proof of correctness (left) and the Haskell code produced by
agda2hs (right). The type _≤_≤_ extrinsically specifies the invariant that was enforced intrinsically by the Tree type in
Fig. 1.

used and automatically inserts necessary imports in the gen-
erated Haskell code.
To simulate Haskell’s automatic insertion of universal

quantifiers for type variables, the Haskell.Prelude also ex-
ports certain often-used lowercase letters as generalised type
variables.4 This allows us to write for example id : a → a
instead of id : ∀{a} → a → a.

2.4 Partiality
A particularly striking difference betweenHaskell and Agda
is the former’s support for partial functions, such as head
that throws an error on empty lists. Although there is a way
to model partiality in Agda and precisely match the origi-
nal behaviour in Haskell, we leave this for future work (c.f.
Sect. 7) as it would introduce significant complexity to the
translation. Instead, we provide a more direct work-around
for the time being, by restricting all definitions to be total.
This is achieved by attaching additional proof obligations
as a function’s preconditions, to be erased after compilation,

4https://agda.readthedocs.io/en/v2.6.2/language/generalization-of-
declared-variables.html

that guarantee the function is total and thus never reaches
the erroneous path. However, when actually executing the
generated code, it is entirely possible for the function to be
called with invalid arguments that do not satisfy these pre-
conditions, therefore we still want an appropriate error mes-
sage to be reported on this occasion.
To model this behaviour in Agda without losing logical

consistency, we require that any calls to error occur only
when an impossible case has been reached, in which case
the auxiliary precondition would provide a witness of the
empty/void type.

error : (@0 i : ⊥) → String→ a
error ()

As an example, we can make head total by requiring the
input list to be non-empty as can be seen in Fig. 3. Notice
how the context of the second clause contains the absurd
proposition p : NonEmpty [], which allows us to safely
call error. Compiling down toHaskell produces the expected
partial implementation.

111

https://agda.readthedocs.io/en/v2.6.2/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.2/language/generalization-of-declared-variables.html

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

head : (xs : List a) {@0 _ : NonEmpty xs}→ a
head (x :: _) = x
head [] {p} = error i "Prelude.head: empty list"
where @0 i : ⊥

i = case p of 𝜆 ()

head :: [a] -> a
head (x : _) = x
head [] = error "Prelude.head: empty list"

Figure 3. The definition of the head function in Agda, taking as argument a proof that the given list is non-empty (left) and
the partial function definition generated by agda2hs with the proof erased (right).

The actual error definition in the agda2hs prelude uses a
tactic argument5 to automatically discover an absurdity in
the current context, hence requiring no value of the empty
type to be explicitly provided.

2.5 Type Classes
Haskell type classes [36] can easily be emulated using in-
stance resolution6 on the Agda side. Concretely, class def-
initions are represented as records containing the class
methods as fields and the class context as type parameters.
The compiler pragma for class definitions should explicitly
end with the class keyword, to distinguish from the case of
translating a plain record. Instance declarations are then
modeledwith regular definitions of the record type, instanti-
ated to the specific type whose instance we are implement-
ing. Finally, constraints in a qualified type or qualified in-
stance declaration compile to instance arguments holding
the translated type. Fig. 4 shows the case for the Monoid
type class. Naturally, we can also enforce that instances sat-
isfy the monoid laws by adding erased fields to the record,
requiring proofs to be provided when implementating them
on the Agda side, yet resulting in identical Haskell output.

Default methods. Haskell also supports default method
implementations, as well as a way to specify the minimal
complete definition of a class. Unfortunately, there is no
equivalent functionality in Agda, so we have to devise a
way to emulate the same behaviour using existing features.
While doing so, we have to avoid introducing a lot of syn-
tactic overhead on the Agda side, but at the same time keep
the translation procedure as simple as possible.
The solution we propose consists of having a main record

containing the method type signatures like before, and then
representing each minimal complete definition as a sepa-
rate record, whose fields are only a subset of the original
fields and the rest are given as derived definitions. Default
methods, on the other hand, have to be replicated across
all minimal records and contain the exact same code. That
way, all minimal records contain all class methods, divided
amongst its fields and definitions. Combined with the fact
that a record definition also defines a module of the same
5https://agda.readthedocs.io/en/v2.6.2/language/reflection.html#tactic-
arguments
6https://agda.readthedocs.io/en/v2.6.2/language/instance-arguments.
html#instance-resolution

name containing all its fields and definitions,7 we can eas-
ily retrieve a value of the original record by opening the
record-module of the minimal record value: when defining
an instance of a class C with possible minimal record C1,
the user can choose to construct a minimal record value of
type r : C1 instead (with strictly less fields to specify) and
construct the final record value with the expression record
{ C1 r }. Internally, agda2hs will chase down the definition
of the minimal record and inline its definition to generate
the expected ‘flat’ Haskell definition.
In Fig. 5, we see an example translation for the Show type

class. The Show record is the original record you would
expect, but there are now two additional minimal records:
Show1 only requires an implementation of showsPrec and
derives show from it, while Show2 does the inverse, and
both have a (matching) default implementation for showList.
Finally, the compiler directive is extended to inform the
backend about these minimal records. To declare an in-
stance for Maybe, one can now simply define a value s1
of type Show1 Maybe and transform it into a value of
type Show Maybe using the Agda syntax record {Show1 s1},
which instantiates the remaining fields show and showList
of Show with their implementations given in Show1.

While things on the Agda side are more verbose than we
would like, we have managed to offer a systematic and in-
tuitive way to cover these type class features without com-
promising the quality of the generated code, as witnessed in
the generated Haskell code of Fig. 5.

3 Case Study: Verifying Properties of a
Program Generator

IOG uses agda2hs for a programming language implemen-
tation [9]. Programs are written in Haskell and compiled to
a simple core language based on System 𝐹

𝜇

𝜔 . As System 𝐹
𝜇

𝜔

supports computation at the type level, types are arguably
programs too.
Wen Kokke contributed a novel program generator that

exhaustively generates System 𝐹
𝜇

𝜔 types and programs us-
ing NEAT [14], a property-based testing system similar to
SmallCheck [27]. At the time of writing, the generator is
used to test the production Haskell implementation of the

7https://agda.readthedocs.io/en/v2.6.2/language/record-types.html#
record-modules

112

https://agda.readthedocs.io/en/v2.6.2/language/reflection.html#tactic-arguments
https://agda.readthedocs.io/en/v2.6.2/language/reflection.html#tactic-arguments
https://agda.readthedocs.io/en/v2.6.2/language/instance-arguments.html#instance-resolution
https://agda.readthedocs.io/en/v2.6.2/language/instance-arguments.html#instance-resolution
https://agda.readthedocs.io/en/v2.6.2/language/record-types.html#record-modules
https://agda.readthedocs.io/en/v2.6.2/language/record-types.html#record-modules

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

record Monoid (a : Set) : Set where
field
mempty : a
mappend : a → a → a
@0 left-identity : mappend mempty x ≡ x
@0 right-identity : mappend x mempty ≡ x
@0 associativity : mappend (mappend x y) z ≡

mappend x (mappend y z)
open Monoid {{…}} public
{-# COMPILE AGDA2HS Monoid class #-}

instance
MonoidNat : Monoid Nat
MonoidNat = 𝜆 where
.mempty → 0
.mappend i j → i + j
.left-identity → ⋯
.right-identity→ ⋯
.associativity → ⋯

{-# COMPILE AGDA2HS MonoidNat #-}

sumMon : {{ Monoid a }}→ List a → a
sumMon [] = mempty
sumMon (x :: xs) = mappend x (sumMon xs)
{-# COMPILE AGDA2HS sumMon #-}

class Monoid a where
mempty :: a
mappend :: a -> a -> a

instance Monoid Nat where
mempty = 0
mappend i j = i + j

sumMon :: Monoid a => [a] -> a
sumMon [] = mempty
sumMon (x : xs) = mappend x (sumMon xs)

Figure 4. Using records and instance arguments to represent Haskell’s Monoid type class.

core language against the Agda model which is compiled
using MAlonzo and makes use of the same Haskell libraries
for cryptography etc. The NEAT generator for types and
terms was originally written in Haskell but the type level
part has subsequently been ported to Agda with minimal
changes, and is compiled using agda2hs. Before using the
NEAT generator in testing we would like to verify that it is
correctly implemented. One of the key components of the
generator is a type checker for terms that makes essential
use of type substitution which, in turn, relies on type re-
naming. We could try to test the correctness properties of
type renaming and substitution operations by generating
types and using NEAT but instead we prove the properties
in Agda. It is straightforward to prove these properties in
Agda whereas to test them would be computationally ex-
pensive, as it would require not only generating individual
types but also arbitrary renamings and substitutions con-
taining an arbitrary number of types.
We introduce the intrinsically well-scoped syntax of

kinds and types of System 𝐹𝜔 (see Fig. 6). The types of Sys-
tem 𝐹𝜔 are similar to the terms of lambda calculus extended
with constants for function arrow and forall. Instead of in-
dexing by the (natural) number of variables and using Fin to
manage variable scope, we index by sets of variables and use
Maybe to manage variable scope. This representation, due

to [6], has the advantage that it is readily translated to a
nested datatype in Haskell rather than a GADT. The former
representation, due to [3], is more commonly used in Agda.
Note the use of Maybe in the arguments of TyForall and
TyLam which signifies that the variable set 𝑛 has been ex-
tended by an additional element.We define operations to ap-
ply (parallel) renamings and (parallel) substitutions to types
(see Fig. 7). The datatype Type is a functor where ren is the
morphismmap and the functor laws are given by ren-id and
ren-comp:

ren-id : (ty : Type n)→ ren id ty ≡ ty
ren-comp : (ty : Type n) (ρ : n → n’) (ρ’ : n’ → n”)

→ ren (ρ’ ∘ ρ) ty ≡ ren ρ’ (ren ρ ty)

The datatype Type is also a monad where TyVar is return
and sub is bind. The three monad laws are given by sub-id,
sub-var and sub-comp:

sub-id : (t : Type n) → sub TyVar t ≡ t
sub-var : (x : n) (σ : n → Type n’)

→ sub σ (TyVar x) ≡ σ x
sub-comp : (ty : Type n)

→ (σ : n → Type n’) (σ’ : n’ → Type n”)
→ sub (sub σ’ ∘ σ) ty ≡ sub σ’ (sub σ ty)

113

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

record Show (a : Set) : Set where
field show : a → String

showsPrec : Nat→ a → ShowS
showList : List a → ShowS

record Show1 (a : Set) : Set where
field showsPrec : Nat→ a → ShowS

show : a → String
show x = showsPrec 0 x ""

showList : List a → ShowS
showList = defaultShowList (showsPrec 0)

record Show2 (a : Set) : Set where
field show : a → String

showsPrec : Nat→ a → ShowS
showsPrec _ x s = show x ++ s

showList : List a → ShowS
showList = defaultShowList (showsPrec 0)

open Show {{…}}
{-# COMPILE AGDA2HS Show class Show1 Show2 #-}

instance
ShowMaybe : {{Show a}}→ Show (Maybe a)
ShowMaybe {a = a} = record {Show1 s1}
where
s1 : Show1 (Maybe a)
s1 .Show1.showsPrec n = 𝜆 where
Nothing→ showString "nothing"
(Just x) → showParen True
(showString "just " ∘ showsPrec 10 x)

{-# COMPILE AGDA2HS ShowMaybe #-}

class Show a where
show :: a -> String
showsPrec :: Nat -> a -> ShowS
showList :: [a] -> ShowS
{-# MINIMAL showsPrec | show #-}
show x = showsPrec 0 x ""
showList = defaultShowList (showsPrec 0)
showsPrec _ x s = show x ++ s

instance (Show a)
=> Show (Maybe a) where

showsPrec n = \case
Nothing -> showString "nothing"
(Just x) -> showParen True
(showString "just " . showsPrec 10 x)

Figure 5. Translating the Show type class with a single default method (showList) and two possible minimal definitions
(showsPrec | show).

data Kind : Set where
Star : Kind
:=> : Kind → Kind → Kind

data Type (n : Set) : Set where
TyVar : n → Type n
TyFun : Type n → Type n → Type n
TyForall : Kind→ Type (Maybe n) → Type n
TyLam : Type (Maybe n) → Type n
TyApp : Type n → Type n → Kind → Type n

data Kind
= Star
| Kind :=> Kind

data Type n
= TyVar n
| TyFun (Type n) (Type n)
| TyForall Kind (Type (Maybe n))
| TyLam (Type (Maybe n))
| TyApp (Type n) (Type n) Kind

Figure 6.Thedefinition of kinds andwell-scoped types of System 𝐹𝜔 in Agda (left) and the corresponding datatypes generated
by agda2hs (right).

114

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

ren : (n → n’) → Type n → Type n’
sub : (n → Type n’) → Type n → Type n’

ren :: (n -> n') -> Type n -> Type n'
sub :: (n -> Type n') -> Type n -> Type n'

Figure 7. The type signatures for parallel renaming and parallel substitution in Agda (left) and the corresponding Haskell
type signatures generated by agda2hs (right).

We then use substitution (implemented in Agda and com-
piled to Haskell) to implement type reduction which is used
in typechecking. Type reduction and typechecking are im-
plemented in Haskell. Type checking is used in the genera-
tor to ensure that all generated terms are well typed.

4 Correctness of Agda2Hs
Since the goal of agda2hs is to produce verified Haskell
code, correctness of the translation is an important consid-
eration. On a high level, one could argue that the semantics
of Agda and Haskell are sufficiently close to each other, and
the translation is sufficiently simple, that the correctness of
the translation is obvious. However, on a closer look one
can see that agda2hs erases certain parts of a term, and if it
erases too much then this can affect the semantics of a term.
For example, in an earlier version of agda2hs, the transla-
tion would erase all implicit arguments instead of all argu-
ments marked as erased with @0. However, with this rule
the function sneaky in Fig. 8 was translated incorrectly.8 In
the new version of agda2hs, all implicit arguments are re-
quired to have a @0 annotation, which means that Agda will
check that the run-time result of the function is not depen-
dent on the erased argument, causing the function sneaky
to be rejected.
Because both Agda and Haskell are rather large lan-

guages and neither has a full formal specification of its se-
mantics, it is currently not feasible to provide a formal cor-
rectness proof for agda2hs. However, what we can do is
give a precise statement of the properties of the translation
that we expect to hold, and of the assumptions that need to
be true for these properties to hold.
We can break down the correctness of agda2hs into two

main properties:
1. If agda2hs successfully produces a Haskell file from

a given Agda file, then this file is valid Haskell code.
2. If an Agda term evaluates to some value 𝑣 , then the

corresponding Haskell term produced by agda2hs
evaluates to the (translation of the) same value 𝑣 .

Of these properties, the second one is the most important:
when the first property fails, we at least know that some-
thing is wrongwhen trying to compile the producedHaskell
code. However, when the second property fails (as in the
example of Fig. 8) the properties we have proven about the
Agda code might fail to hold for the generated Haskell code.

8https://github.com/agda/agda2hs/issues/88

Validity of generated Haskell code. In order for
agda2hs to generate valid Haskell code, the Agda code
needs to fall within the common subset of Haskell and Agda
that is supported by agda2hs as described above. In partic-
ular, the code should satisfy the following requirements:

• The code needs to obey the naming rules of Haskell:
type and term constructors need to start with a capital
letter, while names of functions and variables need to
start with a small letter.

• Names of constructors and record fields should not
be overloaded (which is supported by Agda but not
by Haskell).

• The Agda module needs to import the module
Haskell.Prelude provided by agda2hs, and should not
reuse any names that are used in the Haskell Prelude.

• All defined functions, types, and classes that are used
in non-erased positions of a definition with a COM-
PILE AGDA2HS pragma should either be defined
in Haskell.Prelude or have a COMPILE AGDA2HS
pragma themselves. In particular, functions from the
builtin Agda.Builtin.* modules should not be used di-
rectly.

• All type parameters of functions and type construc-
tors should be of a kind that is translated to a valid
Haskell kind.

• Type quantifiers and constraints should only appear
at the top-level of a function type. (Higher-rank types
are currently not supported, though they would not
be difficult to add.)

• All type arguments and class instances used in appli-
cations of polymorphic functions should be inferrable
by Haskell, since they are erased by agda2hs.

• Type class instances in the Agda code should adhere
to Haskell’s requirement of global uniqueness.

From the point of view of an Agda programmer these re-
strictions may seem onerous, but for a user of agda2hs it
may help to remember that you are not writing Agda code:
you are writing Haskell code which happens to be using the
syntax of Agda.
Currently, most of these properties are not yet checked by

agda2hs. However, as noted before this just means that the
Haskell compiler will reject the generated code. In practice,
this can sometimes be annoying as the user gets an error
message from Haskell rather than from agda2hs, however
there is no risk of unsoundness.

115

https://github.com/agda/agda2hs/issues/88

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

data Vec (a : Set) : {n : Nat}→ Set where
Nil : Vec a {zero}
Cons : {n : Nat}→ a → Vec a {n} → Vec a {suc n}

sneaky : {n : Nat}→ Vec Bool {n}→ Nat
sneaky Nil = 0
sneaky {1} (Cons True xs) = 1
sneaky (Cons x xs) = 2

data Vec a = Nil
| Cons a (Vec a)

sneaky :: Vec Bool -> Int
sneaky Nil = 0
sneaky (Cons True xs) = 1
sneaky (Cons x xs) = 2

Figure 8. A function that would be translated incorrectly if agda2hs would erase all implicit arguments: in Agda, sneaky
(Cons True (Cons False Nil)) evaluates to 2, but the translated Haskell term evaluates to 1 instead.

Preservation of semantics. Most syntactic constructs
of Agda are just mapped one-to-one to the corresponding
Haskell construct. Hence, the most important assumption
that needs to hold in order to guarantee the preservation
of the semantics of programs compiled by agda2hs is that
the Agda and Haskell semantics of these constructs agree.
Since both Agda and Haskell are declarative and purely
functional languages, it is sufficient to check that each eval-
uation step of an Agda term corresponds to zero or more
evaluation steps on the Haskell side. We distinguish the fol-
lowing cases:

• Lambda-abstractions and function applications in
Agda are translated to the corresponding constructs
in Haskell, so a 𝛽-reduction on the Agda side cor-
responds to a 𝛽-reduction of the translated Haskell
term.

• Record values and record projections in Agda are
translated to their equivalent constructs in Haskell, so
their evaluation is likewise preserved.

• Function clauses in Agda are translated to function
clauses in Haskell, so any evaluation step of a func-
tion in Agda corresponds to an evaluation of the trans-
lated function in the Haskell code. Both languages
use a first-match approach to pattern matching, and
Agda forbids pattern matching on arguments that are
marked as erased (as well as arguments of type Set or
Level), hence the same clause will always be chosen
on both sides of the translation.

• Record values that are marked as an instance on the
Agda side are translated to type class instances in the
Haskell code. Any call to a field of this record that uses
this instance is translated to a call to the correspond-
ing method in the Haskell code. Thanks to Haskell’s
guarantee of global uniqueness of type class instances,
we know that the same instance will be inferred by
Haskell (or else the translation will fail).

Note also that Agda guarantees that all terms are strongly
normalizing, so any differences in the order of evaluation
do not influence the correctness of agda2hs.
Other assumptions that need to hold to ensure preserva-

tion of the semantics of translated programs are:

• Prelude: The implementation of functions in
Haskell.Prelude and Haskell.Prim.* should be consis-
tent with their Haskell implementation.

• Erasure: All implicit arguments that are erased by
agda2hs are either marked with @0, or have a return
type of the form Level or Set i.

• Type classes: All instance arguments (that are not
marked with @0) should be canonical, i.e. they should
be constructed from declared instances that are com-
piled to Haskell instances.

The first property is currently only checked manually,
but only needs to be checked once for each function in the
agda2hs prelude. The other two properties are checked by
agda2hs, so any violation will lead to an error during the
translation to Haskell.

5 The Implementation of agda2Hs
In order to implement our translation we use Agda’s sup-
port for custom backends, which allows easy development
of custom code generators similar to the built-in ones for
generating Haskell,9 Javascript, HTML and LaTeX. In con-
trast to the builtin backends that can be activated with a
flag, new custom backends in Agda are standalone Haskell
executables that import Agda’s internals as a library. This
makes them faster and easier to develop as it shortens the
edit-compile-run loop considerably. It also means that back-
end releases do not need to be tied to Agda releases.
To implement the backend one needs to provide a com-

pilation function from Agda definitions to Haskell ones.
Crucially, the backend operates on the phase after type-
checking, reading the generated interface .agdai files for
the (successfully checked) definitions and spitting out their
Haskell translations. (Practically, our translation function is
executed under Agda’s typechecking monad, allowing us to
conveniently re-use Agda internals for our own purposes.)

9We compare the existing Haskell code generator with our approach and
explain why it is unsuitable for our purposes in Sect. 6.1.

116

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

The user can then invoke the translation on specific defini-
tions via the COMPILE pragma or include verbatim Haskell
code in a FOREIGN block.10
As the source and target languages share a lot of simi-

larities, a major part of the translation process is straight-
forward, merely translating Agda constructs to the corre-
sponding Haskell constructs (e.g. for lambda abstractions).
However, there are some cases that are subtle due to dif-
ferences between the source and target language that need
more careful attention.
First and foremost, the backend only handles a certain

subset of Agda, excluding the parts that have no Haskell
equivalent (e.g. defining a type by pattern matching, in-
dexed datatypes). In these cases, the backend rejects the un-
supported input with an appropriate error message. Note
that the user can still use dependent types to prove theorems
about their non-dependently typed programs, but these are
only typechecked without any counterpart on the Haskell
side.
In some other cases, the design of the two languages di-

verge and a similar construct is handled in a totally differ-
ent way, as in the case of ‘where’ clauses: where clauses
in Agda introduce anonymous modules with parameters
drawn from the enclosing scope, so we have to remedy this
during translation by tracking down this module and com-
piling its contained definitions applied to the current scope,
essentially reversing Agda’s lambda-lifting phase.

6 Related Work
We distinguish two main forms of related work: other tools
for extracting executable code from a proof assistant, and
tools for verifying code written in Haskell directly.

6.1 Program Extraction
agda2hs can be seen as a form of program extraction,
as used in theorem provers such as Coq11 [22, 23], Is-
abelle/HOL [8, 18], Minlog [5], ACL2 [17], and Russell [29].
Compared to these approaches, we expect our approach to
be much more familiar and easy to learn to a (Haskell) pro-
grammer: instead of first having to write a mathematical
proof and then extracting the executable program from that,
the programmer can instead write an Agda program with
precise and expressive types without being forced into prov-
ing anything. One important difference with other program
extractors is thatwe do not consider the full source language
and instead restrict ourselves to a subset of Agda that cor-
responds to valid Haskell, so we do not need to insert any
calls to unsafeCoerce or similar functions. This restriction
also means we can generate code that is easy to read and
understand independently, so a Haskell programmer does

10https://agda.readthedocs.io/en/v2.6.2/language/foreign-function-
interface.html#compiler-pragmas
11https://coq.inria.fr/refman/addendum/extraction.html

not need to learn Agda in order to use a library written
using agda2hs. Moreover, a programmer using agda2hs
can collaborate easily with other programmers/maintainers
who are using Haskell directly as they are able to review
the generated code they would normally do. This is not the
case for extraction mechanisms that generate reliable, per-
formant, but unreadable code even if the mechanism is fully
verified. Furthermore if the agda2hs programmermakes no
further contributions to the project the other developers can
take over maintenance of Haskell code without having to
use agda2hs. This is a particular advantage in open source
projects where activity from a particular contributor may
be transient. Another difference with extraction is that we
use explicit erasure annotations, which allows us to erase
all traces of proof arguments. For example, an Agda func-
tion div : (x y : Nat) → @0 y ≢ 0 → Nat is translated to a
Haskell function div : Natural -> Natural -> Natural.
The price we pay for this is that nothing prevents a program-
mer from calling div 1 0 on the Haskell side. Finally, it is
important to note that the goal of agda2hs is not neces-
sarily to compete directly with existing program extraction
tools. Rather, our aim is to build a lightweight tool that is
easy to use and produces readable Haskell code in a pre-
dictable manner.

MAlonzo backend. Agda already has a Haskell backend
called MAlonzo, so one might wonder why we do not just
use that instead. MAlonzo is designed to compile any Agda
program to Haskell. Hence it can handle arbitrarily complex
dependently typed programs and produce relatively perfor-
mant Haskell code. The downside is that it does so by cir-
cumventing the Haskell type system.The nature of this pro-
cess also makes the generated code almost unreadable and
generally hard to work with: see Fig. 9 for an example of
the code generated by MAlonzo. While many of the coer-
cions inserted by MAlonzo are not necessary to make the
code be accepted by GHC, they cannot be avoided in general
because Agda supports full dependent types, while GHC
(currently) does not. The coercions inserted by MAlonzo
make it difficult to make the jump from having an Agda
prototype of a Haskell program (or a component in a larger
Haskell project) to having a production Haskell program.
Arguably, when we use MAlonzo our trustworthy verified
Agda code is compiled to Haskell code that is less trustwor-
thy than handwritten Haskell code as it cannot be mean-
ingfully checked by either a human reader or the Haskell
typechecker. The agda2hs project is aimed at solving this
problem, producing trustworthy Haskell output from veri-
fied Agda input.

Coq extraction. The built-in extraction command in Coq
seems to produce considerably more readable Haskell out-
put than MAlonzo, however we do get unwanted implicit
arguments and automatically generated variable names in
the extracted Haskell code of Fig. 10. (This can be remedied

117

https://agda.readthedocs.io/en/v2.6.2/language/foreign-function-interface.html#compiler-pragmas
https://agda.readthedocs.io/en/v2.6.2/language/foreign-function-interface.html#compiler-pragmas
https://coq.inria.fr/refman/addendum/extraction.html

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

d_insert_1494 :: Integer -> Integer -> Integer
-> T_Tree_1340 -> T__'8804'__1324 -> T__'8804'__1324 -> T_Tree_1340

d_insert_1494 ~v0 ~v1 v2 v3 ~v4 ~v5 = du_insert_1494 v2 v3
du_insert_1494 :: Integer -> T_Tree_1340 -> T_Tree_1340
du_insert_1494 v0 v1 = case coe v1 of
C_Leaf_1348 -> coe C_Node_1352 (coe v0) (coe C_Leaf_1348) (coe C_Leaf_1348)
C_Node_1352 v2 v3 v4 -> coe MAlonzo.Code.Haskell.Prim.du_case_of__54

(coe d_compare_1474 (coe v0) (coe v2))
(coe du_'46'extendedlambda0_1514 (coe v0) (coe v2) (coe v3) (coe v4))

_ -> MAlonzo.RTE.mazUnreachableError

Figure 9.A fragment of the Haskell code generated byMAlonzo from the Agda code in Fig. 1. MAlonzo circumvents Haskell’s
type system with unsafe casts with coe.

by manually instructing the erasure of these arguments:
Extraction Implicit insert [l u].)
In contrast to agda2hs, Coq does not seem to readily

support type classes, as seen in Fig. 11 where classes get
translated to plain datatypes and instances are given in
dictionary-passing style.
We can easily conceive a port of our work to Coq that

adds proper Prelude support and handles type classes, but
it still remains more natural to choose Agda whose syntax
and idioms are closer in spirit to Haskell’s.

Reflection-based extraction. Sinkarovs and Cockx [28]
show howAgda’s reflection API can be used for the purpose
of developing custom code extractors from within Agda.
This work is mostly orthogonal to ours: they explain how
to implement an extractor, while we focus here on the use
of a specific extraction tool agda2hs. We expect it would
have been possible to implement agda2hs using reflection
instead, but we decided to use Agda’s backend mechanism
instead because it is more mature and allows easy integra-
tion with existing libraries for generating Haskell syntax.

6.2 Verification of Haskell Code
Since Haskell code is amenable to equational reasoning and
formal verification, there have beenmany attempts to verify
code written in Haskell directly. One obvious point of com-
parison for agda2hs is hs-to-coq [7, 30]. While hs-to-coq
starts from Haskell code that is translated to Coq code that
must then be verified by hand, we start from Agda code that
is (intrinsically or extrinsically) verified and translate that
to Haskell, erasing proofs and type dependencies in the pro-
cess. Compared to hs-to-coq, with agda2hs it is possible
to:

• change or refine the type signature of functions to en-
sure totality,

• verify properties using a mix of intrinsic and extrinsic
verification,

• develop and maintain programs using the interactive
features of Agda,

• build libraries that are usable from both Haskell and
Agda.

Of course, there is a price to be paid for these advantages,
the most significant part is that agda2hs does not support
verification of existing Haskell code directly. While this is
a real disadvantage for some applications, writing both the
program and its proof of correctness in the same language
allows for a much tighter integration between the two. Also,
thanks to Agda’s FFI features we can still make use of exist-
ing Haskell functions as long as we are happy to postulate
their properties.
Abel et al. [1] also used Agda to verify properties of

Haskell programs. However, their approach is closer to
hs-to-coq than to ours: they translate GHC’s Core lan-
guage into amonadic embedding inAgda. As a consequence,
most of the advantages and disadvantages from the compar-
isonwith hs-to-coq apply here as well. In the 16 years since
publication of this paper, there have been many changes to
Agda so applying this approach would require a whole new
implementation. Thanks to significant advances in Agda’s
usability as a programming language, it is now entirely fea-
sible to develop both programs and their proofs side-by-side
in Agda directly.
Christiansen et al. [11] use Coq to prove properties of par-

tial Haskell programs by wrapping computations in a (free)
monad. This could similarly be supported in agda2hs by
working with the Maybe monad to model possible failure
and/or the General monad to model general recursion [24].

Liquid Haskell [32, 33, 35] extends Haskell with refine-
ment types in order to specify and automatically check cor-
rectness properties in Haskell code directly. When it can
be applied, this approach clearly has a much lower over-
head than using either hs-to-coq or agda2hs. However,
not all properties can easily be expressed as refinement
types. Moreover, using an automatic prover means that it
is much harder to guide the proving process in case it fails.
Vazou et al. [34] make a detailed comparison between Liq-
uid Haskell and Coq. We expect agda2hs to share many of
the characteristics of Coq in this comparison.

118

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

Inductive Tree {l u : nat} : Set :=
Leaf : l <= u -> Tree

| Node : forall x,
@Tree l x -> @Tree x u -> Tree.

Fixpoint insert {l u} x (t : @Tree l u)
(p : l <= x) (q : x <= u) : Tree :=
match t with
| Leaf _ => Node x (Leaf p) (Leaf q)
| Node y l r => match cmp x y with
| LT q => Node y (insert x l p q) r
| EQ q => Node y l r
| GT p => Node y l (insert x r p q)
end

end.

data Tree = Leaf
| Node Nat Tree Tree

insert :: Nat -> Nat -> Nat
-> Tree -> Tree

insert l u x t = case t of {
Leaf -> Node x Leaf Leaf;
Node y l0 r -> case cmp x y of {
LT -> Node y (insert l y x l0) r;
EQ -> Node y l0 r;
GT -> Node y l0 (insert y u x r)}}

Figure 10. The insertion example from Fig. 1; implicit arguments l and u survive the translation.

Class Monoid (a : Set) :=
{ mempty : a
; mappend : a -> a -> a }.

Instance MonoidNat : Monoid nat :=
{ mempty := 0
; mappend i j := i + j }.

Fixpoint sumMon {a} `{Monoid a}
(xs : list a) : a :=
match xs with
| [] => mempty
| x :: xs => mappend x (sumMon xs)
end.

data Monoid a = Build_Monoid a (a -> a -> a)

mempty :: (Monoid a1) -> a1
mempty = ...
mappend :: (Monoid a1) -> a1 -> a1 -> a1
mappend = ...
monoidNat :: Monoid Nat
monoidNat = Build_Monoid O add

sumMon :: (Monoid a1) -> (List a1) -> a1
sumMon h xs = case xs of {

([]) -> mempty h;
(:) x xs0 -> mappend h x (sumMon h xs0)}

Figure 11. Default class extraction in Coq that produces no Haskell type classes and exposes internal names.

GHC Haskell is also steadily getting closer to becoming
a full-fledged dependently typed language itself [15, 37].
Once this transformation is complete, we expect it will re-
place agda2hs for some use cases, in particular for encod-
ing pre-/post-conditions and invariants at the type level.
However, even with dependent types Haskell will remain
a partial language and hence not suited for actual theorem
proving, while Agda comes with a termination checker as
well as a large standard library that can be used for writ-
ing proofs. Another benefit of agda2hs is that it produces
simple Haskell code that can be used by any Haskell pro-
grammer, while effectively using code written in dependent
Haskell will still require a learning curve.

7 Conclusion and Future Work
In this paper, we have presented agda2hs and demon-
strated its usefulness for producing verified Haskell code.
We were particularly delighted by the streamlined develop-
ment process provided by Agda’s backend infrastructure;

we implemented the translation without significant devel-
opment effort, and the codebase is minimal enough to allow
for future extensions.

Supporting more Haskell features. While the current
subset of Haskell and Agda used by agda2hs is expressive
enough to write many programs, our experience has shown
that there is a need for more features that facilitate work-
ing with intrinsically typed data structures. In the future,
we plan to continue extending agda2hs with additional fea-
tures to make it possible to verify a wider range of programs.
Our aim is to representmore features of Haskell in Agda, not
to compile arbitrary Agda code to Haskell. This is what al-
lows us to produce clean and usable Haskell code in the end.
Among the features of Haskell that are not yet supported by
agda2hs, we can identify three rough categories:

• First, we have Haskell features that already have an
Agda equivalent that is equally or more expressive.
For example, this is the case for generalized alge-
braic data types (GADTs) [20] and higher-rank types.
Since these Agda features are more general than their
Haskell counterparts, the main difficulty here is to

119

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

identify the fragment of the Agda syntax that can be
supported by agda2hs.

• Second, there are Haskell features that have no direct
Agda equivalent but that can be emulated with some
creativity. One example of this is the support for de-
fault methods we already implemented (see Sect. 2.5).
Another examplewould be to use Agda’swith abstrac-
tion [26] to support pattern guards and view patterns.

• Finally, some features have no built-in equivalent in
Agda and are not easily emulated either. One exam-
ple of this is 32-bit arithmetic, which is supported
by Haskell (Float, Int32, Word32), but has no built-in
equivalent in Agda. Other examples include strictness
annotations, unboxed datatypes, and specialize prag-
mas. In order to support these features in agda2hs,
they would first need to be added to Agda itself.

Compiling static properties to run-time checks. With
our current approach, function preconditions and datatype
invariants that are enforced statically on the Agda side are
erased in the translation to Haskell. This is problematic
when agda2hs is used to develop a part of a larger Haskell
project: ‘plain’ Haskell code can call a function without
checking the preconditions, or construct an element of a
datatype that violates the invariants. To provide an extra
layer of safety, we could add run-time checks to the gen-
erated Haskell code. This is possible for any property that
is decidable, which is usually the case (e.g. the decidability
of the tree invariants from Sect. 1 is a consequence of the
decidable ordering of the natural numbers).
Another possible extension would be to integrate static

verification and property-based testing by allowing the user
of agda2hs to postulate certain properties on the Agda
side and translate those properties to QuickCheck proper-
ties [12]. However, it remains unclear how to account for
random generation and shrinking of test data.

Totality and infinite data. A limitation of the current
approach of agda2hs is that all properties are proven in
Agda by assuming functions are total, while Haskell func-
tions can result in an error or fail to terminate.While there is
a good argument to be made for why this is usually not a big
problem [13], it would be interesting to investigate the pos-
sibility of compiling monadic Agda code (using some kind
of partiality monad) to pure Haskell code. This would give
a more accurate representation of Haskell code at the price
of additional overhead on the Agda side.
We do not provide any support for infinite data structures

yet either, but we are currently experimenting with repre-
senting them using coinductive types.12

Hs2agda: translating in the inverse direction. Some-
times we have existing Haskell code that we would like to
re-use, rather than porting it in agda2hs from scratch. To
12https://agda.readthedocs.io/en/v2.6.2/language/coinduction.html

this end, it would be convenient to provide the developer
with a back-translation from Haskell to agda2hs-compliant
Agda code, which can then serve as a starting point for ver-
ification. Such a tool would streamline the verification pro-
cess and make agda2hs easier to adopt within an existing
project.

Applications of agda2Hs. On the side of applications,
so far we have focused on the verification of libraries that
offer purely functional data structures and algorithms. How-
ever, typical Haskell programs involve a significant amount
of monads to manage side effects. Further experiments are
needed to investigate how to apply agda2hs to monadic
code. We would also like to evaluate the usability and ef-
fectiveness of our approach by comparing the verification
effort with competing approaches such as Liquid Haskell
and hs-to-coq.

Acknowledgments
Wewould like to thank PhilipWadler and the anonymous re-
viewers for their helpful feedback and insightful comments.

This work was supported by Input Output (iohk.io)
through their funding of the Edinburgh Blockchain Tech-
nology Lab.
Jesper Cockx holds anNWOVeni grant on ‘A trustworthy

and extensible core language for Agda’ (VI.Veni.202.216).

References
[1] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell.

2005. Verifying Haskell programs using constructive type theory. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2005,
Tallinn, Estonia, September 30, 2005, Daan Leijen (Ed.). ACM, 62–73.
https://doi.org/10.1145/1088348.1088355

[2] Agda Development Team. 2021. Agda 2.6.2 documentation. https:
//agda.readthedocs.io/en/v2.6.2/

[3] Thorsten Altkenkirch and Bernhard Reus. 1999. Monadic presenta-
tions of lambda terms using generalized inductive types. In Computer
Science Logic (CSL), 1999.

[4] Robert Atkey. 2018. Syntax and Semantics of Quantitative Type The-
ory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj
Dawar and Erich Grädel (Eds.). ACM, 56–65. https://doi.org/10.1145/
3209108.3209189

[5] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Monika
Seisenberger. 2011. Minlog - A Tool for Program Extraction Support-
ing Algebras and Coalgebras. In Algebra and Coalgebra in Computer
Science - 4th International Conference, CALCO 2011, Winchester, UK,
August 30 - September 2, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6859). Springer, 393–399. https://doi.org/10.1007/978-3-
642-22944-2_29

[6] Richard Bird and Ross Paterson. 1999. de Bruijn notation as a nested
datatype. The Journal of Functional Programming 9 (January 1999).
Issue 1.

[7] Joachim Breitner, Antal Spector-Zabusky, Yao Li 0004, Christine
Rizkallah, John Wiegley, and Stephanie Weirich. 2018. Ready, set,
verify! Applying hs-to-coq to real-world Haskell code (experience re-
port). Proceedings of the ACM on Programming Languages 2, ICFP
(2018). https://doi.org/10.1145/3236784

120

https://agda.readthedocs.io/en/v2.6.2/language/coinduction.html
https://doi.org/10.1145/1088348.1088355
https://agda.readthedocs.io/en/v2.6.2/
https://agda.readthedocs.io/en/v2.6.2/
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1145/3236784

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell

[8] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök,
and John Matthews. 2008. Imperative Functional Programming with
Isabelle/HOL. InTheorem Proving in Higher Order Logics, 21st Interna-
tional Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings (Lecture Notes in Computer Science, Vol. 5170), Otmane Aït
Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer, 134–149.
https://doi.org/10.1007/978-3-540-71067-7_14

[9] James Chapman, Roman Kireev, Chad Nester, and PhilipWadler. 2019.
System F in Agda, for Fun and Profit. In Mathematics of Program
Construction - 13th International Conference, MPC 2019, Porto, Por-
tugal, October 7-9, 2019, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 11825), Graham Hutton (Ed.). Springer, 255–297. https:
//doi.org/10.1007/978-3-030-33636-3_10

[10] David Christiansen and Edwin Brady. 2016. Elaborator reflection:
extending Idris in Idris. In Proceedings of the 21st ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and
Eijiro Sumii (Eds.). ACM, 284–297. https://doi.org/10.1145/2951913.
2951932

[11] Jan Christiansen, Sandra Dylus, and Niels Bunkenburg. 2019. Veri-
fying Effectful Haskell Programs in Coq. In Proceedings of the 12th
ACM SIGPLAN International Symposium on Haskell (Berlin, Germany)
(Haskell 2019). Association for Computing Machinery, New York, NY,
USA, 125–138. https://doi.org/10.1145/3331545.3342592

[12] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’00), Montreal, Canada, September 18-21, 2000, Martin Oder-
sky and Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/
351240.351266

[13] Nils Anders Danielsson, JohnHughes, Patrik Jansson, and JeremyGib-
bons. 2006. Fast and loose reasoning is morally correct. In Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones
(Eds.). ACM, 206–217. https://doi.org/10.1145/1111037.1111056

[14] Jonas Duregård. 2016. Automated Black-Box Property Based Testing.
Ph. D. Dissertation. Chalmers University and Göteborg University.

[15] Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and
Practice. CoRR abs/1610.07978 (2016). arXiv:1610.07978 http://arxiv.
org/abs/1610.07978

[16] Kathleen Fisher, John Launchbury, and Raymond Richards. 2017. The
HACMS program: using formalmethods to eliminate exploitable bugs.
Philosophical Transactions of the Royal Society 375 (September 2017).
Issue 2104.

[17] David A. Greve, Matt Kaufmann, Panagiotis Manolios, J. Strother
Moore, Sandip Ray, José-Luis Ruiz-Reina, Rob Sumners, Daron Vroon,
and Matthew Wilding. 2008. Efficient execution in an automated rea-
soning environment. Journal of Functional Programming 18, 1 (2008),
15–46. https://doi.org/10.1017/S0956796807006338

[18] Florian Haftmann and Tobias Nipkow. 2010. Code Generation via
Higher-Order Rewrite Systems. In Functional and Logic Programming,
10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-
21, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6009),
Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.). Springer,
103–117. https://doi.org/10.1007/978-3-642-12251-4_9

[19] GrahamHutton. 2016. Programming in Haskell (2nd edition ed.). Cam-
bridge University Press.

[20] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
GeoffreyWashburn. 2006. Simple unification-based type inference for
GADTs. In Proceedings of the 11th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2006, Portland, Oregon, USA,
September 16-21, 2006, John H. Reppy and Julia L. Lawall (Eds.). ACM,
50–61. https://doi.org/10.1145/1159803.1159811

[21] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[22] Pierre Letouzey. 2002. A New Extraction for Coq. In Types for Proofs
and Programs, Second International Workshop, TYPES 2002, Berg en
Dal, The Netherlands, April 24-28, 2002, Selected Papers (Lecture Notes
in Computer Science, Vol. 2646), Herman Geuvers and Freek Wiedijk
(Eds.). Springer, 200–219. http://link.springer.de/link/service/series/
0558/bibs/2646/26460200.htm

[23] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic
and Theory of Algorithms, 4th Conference on Computability in Eu-
rope, CiE 2008, Athens, Greece, June 15-20, 2008, Proceedings (Lecture
Notes in Computer Science, Vol. 5028), Arnold Beckmann, Costas Dim-
itracopoulos, and Benedikt Löwe (Eds.). Springer, 359–369. https:
//doi.org/10.1007/978-3-540-69407-6_39

[24] Conor McBride. 2015. Turing-Completeness Totally Free. In Mathe-
matics of Program Construction - 12th International Conference, MPC
2015, Königswinter, Germany, June 29 - July 1, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9129), Ralf Hinze and Janis
Voigtländer (Eds.). Springer, 257–275. https://doi.org/10.1007/978-3-
319-19797-5_13

[25] ConorMcBride. 2016. I Got Plenty o’ Nuttin’. InAList of SuccessesThat
Can Change the World - Essays Dedicated to Philip Wadler on the Occa-
sion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600),
Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella
(Eds.). Springer, 207–233. https://doi.org/10.1007/978-3-319-30936-
1_12

[26] Conor McBride and James McKinna. 2004. The view from the left.
J. Funct. Program. 14, 1 (2004), 69–111. https://doi.org/10.1017/
S0956796803004829

[27] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Small-
check and lazy smallcheck: automatic exhaustive testing for small val-
ues. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell,
Haskell 2008, Victoria, BC, Canada, 25 September 2008, Andy Gill (Ed.).
ACM, 37–48. https://doi.org/10.1145/1411286.1411292

[28] Artjoms Sinkarovs and Jesper Cockx. 2021. Extracting the power of
dependent types. In GPCE ’21: Concepts and Experiences, Chicago, IL,
USA, October 17 - 18, 2021, Eli Tilevich and Coen De Roover (Eds.).
ACM, 83–95. https://doi.org/10.1145/3486609.3487201

[29] Matthieu Sozeau. 2007. Program-ing finger trees in Coq. In Proceed-
ings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, Ralf
Hinze and Norman Ramsey (Eds.). ACM, 13–24. https://doi.org/10.
1145/1291220.1291156

[30] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. 2018. Total Haskell is reasonable Coq. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, Janu-
ary 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 14–27.
https://doi.org/10.1145/3167092

[31] Matus Tejiscak. 2020. A dependently typed calculus with pattern
matching and erasure inference. Proceedings of the ACM on Program-
ming Languages 4, ICFP (2020). https://doi.org/10.1145/3408973

[32] Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph. D.
Dissertation. University of California, San Diego, USA. https://
escholarship.org/uc/item/8dm057ws

[33] Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Gra-
ham Hutton. 2018. Theorem proving for all: equational reasoning
in Liquid Haskell (functional pearl). In Proceedings of the 11th ACM
SIGPLAN International Symposium on Haskell, Haskell@ICFP 2018, St.
Louis, MO, USA, September 27-17, 2018, Nicolas Wu (Ed.). ACM, 132–
144. https://doi.org/10.1145/3242744.3242756

[34] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. 2017. A tale
of two provers: verifying monoidal string matching in Liquid Haskell

121

https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1111037.1111056
https://arxiv.org/abs/1610.07978
http://arxiv.org/abs/1610.07978
http://arxiv.org/abs/1610.07978
https://doi.org/10.1017/S0956796807006338
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/3486609.3487201
https://doi.org/10.1145/1291220.1291156
https://doi.org/10.1145/1291220.1291156
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3408973
https://escholarship.org/uc/item/8dm057ws
https://escholarship.org/uc/item/8dm057ws
https://doi.org/10.1145/3242744.3242756

Reasonable Agda Is Correct Haskell: Writing Verified Haskell using agda2hs Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

and Coq. In Proceedings of the 10th ACM SIGPLAN International Sym-
posium on Haskell, Oxford, United Kingdom, September 7-8, 2017, Ia-
vor S. Diatchki (Ed.). ACM, 63–74. https://doi.org/10.1145/3122955.
3122963

[35] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Si-
mon L. Peyton Jones. 2014. Refinement types for Haskell. In Pro-
ceedings of the 19th ACM SIGPLAN international conference on Func-
tional programming, Gothenburg, Sweden, September 1-3, 2014, Johan
Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. https:
//doi.org/10.1145/2628136.2628161

[36] PhilipWadler and Stephen Blott. 1989. How to Make ad-hoc Polymor-
phism Less ad-hoc. In Conference Record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989. ACM Press, 60–76. https://doi.org/10.1145/
75277.75283

[37] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de
Amorim, and Richard A. Eisenberg. 2017. A specification for depen-
dent types in Haskell. Proceedings of the ACM on Programming Lan-
guages 1, ICFP (2017). https://doi.org/10.1145/3110275

122

https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/3110275

	Abstract
	1 Introduction
	2 agda2hs
	2.1 Erasure of Type-Level Arguments
	2.2 Intrinsic versus Extrinsic Verification
	2.3 Primitives & Prelude
	2.4 Partiality
	2.5 Type Classes

	3 Case Study: Verifying Properties of a Program Generator
	4 Correctness of Agda2Hs
	5 The Implementation of agda2hs
	6 Related Work
	6.1 Program Extraction
	6.2 Verification of Haskell Code

	7 Conclusion and Future Work
	Acknowledgments
	References

